Skip to content

reconst_ihmt

Compute myelin indices maps from the MT and ihMT images. Please refer to https://github.com/scilus/scilpy/blob/2ced08f4d70cef1d7e4b089872f7593bf5b2833a/scripts/scil_mti_maps_ihMT.py to understand input format.

Keywords : magnetization transfer imaging, inhomogeneous magnetization transfer, myelin


Format : tuple val(meta), val(altpn), val(altnp), val(pos), val(neg), val(mtoff_pd)

TypeDescriptionMandatoryPattern
metamapGroovy Map containing sample information e.g. [ id:'test', single_end:false ]True
altpnlistList of files (path to all echoes) corresponding to the alternation of positive and negative frequency saturation pulse.True*atlpn*.{nii,nii.gz}
altnplistList of files (path to all echoes) corresponding to the alternation of negative and positive frequency saturation pulse.True*altnp*.{nii,nii.gz}
poslistList of files (path to all echoes) corresponding to the positive frequency saturation pulse.True*pos*.{nii,nii.gz}
neglistList of files (path to all echoes) corresponding to the negative frequency saturation pulse.True*neg*.{nii,nii.gz}
mtoff_pdlistList of files (path to all echoes) corresponding to the predominant PD (proton density) weighting images with no saturation pulse.True*mtoff_pd*.{nii,nii.gz}

Format : tuple val(mtoff_t1), path(mask), val(jsons), val(acq_params), path(b1), val(b1_fit)

TypeDescriptionMandatoryPattern
mtoff_t1listList of files (path to all echoes) corresponding to the predominant T1 weighting images with no saturation pulse.True*mtoff_t1*.{nii,nii.gz}
maskfileNifti brain mask.True*mask.{nii,nii.gz}
jsonslistList of json files for acquisition parameters extraction in the case of a Philips acquisition, otherwise use acq_params. Should be a json file for the mtoff_pd and mtoff_t1 files, in that order.True*.json
acq_paramslistList of values for acquisition parameters extraction. Should be in that order; flip angle of mtoff_pd, flip angle of mtoff_t1, TR of mtoff_pd, TR of mtoff_t1 (where TR = repetition time).True
b1fileNifti file containing a coregistered B1 map.True*b1*.{nii,nii.gz}
b1_fitlistList of files for the model based B1 correction method.True*fitValues*.mat

Format : tuple val(meta), path(ihMT_native_maps)

TypeDescriptionMandatoryPattern
metamapGroovy Map containing sample information e.g. [ id:'test', single_end:false ]True
ihMT_native_mapsdirectoryFolder containing ihMT maps in native space. (MTR and ihMTR, plus MTsat and ihMTsat if mtoff_t1 was given)TrueihMT_native_maps

Format : tuple val(meta), path(Complementary_maps)

TypeDescriptionMandatoryPattern
metamapGroovy Map containing sample information e.g. [ id:'test', single_end:false ]True
Complementary_mapsdirectoryFolder containing complementary maps. (intermediate files, B1 correction files, if extended option given)TrueComplementary_maps

Format : path(versions.yml)

TypeDescriptionMandatoryPattern
versions.ymlfileFile containing software versionsTrueversions.yml

DescriptionDOI
scilpyThe Sherbrooke Connectivity Imaging Lab (SCIL) Python dMRI processing toolbox.


Last updated : 2025-10-30