Skip to content

connectivity_decompose

Divide a tractogram into its various connections using a brain parcellation(labels). The hdf5 output format allows to store other information required for connectivity, such as the associated labels.

Keywords : nifti, connectivity, decompose, scilpy


Format : tuple val(meta), path(trk), path(labels)

TypeDescriptionMandatoryPattern
metamapGroovy Map containing sample information e.g. [ id:'sample1', single_end:false ]True
trkfileTractogram to decompose.True*.{trk, tck, vtk, fib, dpy}
labelsfilebrain parcellation. Labels must have 0 as background. Volumes must have isotropic voxels.True*.nii.gz

Format : tuple val(meta), path(*__decomposed.h5)

TypeDescriptionMandatoryPattern
metamapGroovy Map containing sample information e.g. [ id:'sample1', single_end:false ]True
*__decomposed.h5fileOutput hdf5 file where each bundles is a group with key’LABEL1_LABEL2’. The array_sequence format cannot be stored directly in a hdf5, so each group is composed of ‘data’, ‘offsets’ and ‘lengths’ from the array sequence. The ‘data’ is stored in VOX/CORNER for simplicity and efficiency.True*__decomposed.h5

Format : tuple val(meta), path(*__labels_list.txt)

TypeDescriptionMandatoryPattern
metamapGroovy Map containing sample information e.g. [ id:'sample1', single_end:false ]True
*__labels_list.txtfileSave the labels list as text file.True*__labels_list.txt

Format : path(versions.yml)

TypeDescriptionMandatoryPattern
versions.ymlfileFile containing software versionsTrueversions.yml

DescriptionDOI
scilpyThe Sherbrooke Connectivity Imaging Lab (SCIL) Python dMRI processing toolbox.


Last updated : 2025-10-30