reconst_dtimetrics
Script to compute all of the Diffusion Tensor Imaging (DTI) metrics
Keywords : nifti, DTI, tensor, scilpy
Inputs
Section titled “Inputs”Input 1
Section titled “Input 1”Format : tuple val(meta), path(dwi), path(bval), path(bvec), path(b0mask)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| dwi | file | Nifti DWI volume used to extract DTI metrics. | True | *.{nii,nii.gz} |
| bval | file | B-values in FSL format. | True | *.bval |
| bvec | file | B-vectors in FSL format. | True | *.bvec |
| b0mask | file | Nifti b0 volume file used to mask the input image. | False | *.{nii,nii.gz} |
Outputs
Section titled “Outputs”Format : tuple val(meta), path(*__ad.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__ad.nii.gz | file | Axial diffusivity. | True | *__ad.{nii,nii.gz} |
Format : tuple val(meta), path(*__evecs.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__evecs.nii.gz | file | Eigenvectors of the tensor. | True | *__evecs.{nii,nii.gz} |
evecs_v1
Section titled “evecs_v1”Format : tuple val(meta), path(*__evecs_v1.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__evecs_v1.nii.gz | file | First eigenvector. | True | *__evecs_v1.{nii,nii.gz} |
evecs_v2
Section titled “evecs_v2”Format : tuple val(meta), path(*__evecs_v2.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__evecs_v2.nii.gz | file | Second eigenvector. | True | *__evecs_v2.{nii,nii.gz} |
evecs_v3
Section titled “evecs_v3”Format : tuple val(meta), path(*__evecs_v3.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__evecs_v3.nii.gz | file | Third eigenvector. | True | *__evecs_v3.{nii,nii.gz} |
Format : tuple val(meta), path(*__evals.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__evals.nii.gz | file | Eigenvalues of the tensor. | True | *__evals.{nii,nii.gz} |
evals_e1
Section titled “evals_e1”Format : tuple val(meta), path(*__evals_e1.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__evals_e1.nii.gz | file | First eigenvalue. | True | *__evals_e1.{nii,nii.gz} |
evals_e2
Section titled “evals_e2”Format : tuple val(meta), path(*__evals_e2.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__evals_e2.nii.gz | file | Second eigenvalue. | True | *__evals_e2.{nii,nii.gz} |
evals_e3
Section titled “evals_e3”Format : tuple val(meta), path(*__evals_e3.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__evals_e3.nii.gz | file | Third eigenvalue. | True | *__evals_e3.{nii,nii.gz} |
Format : tuple val(meta), path(*__fa.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__fa.nii.gz | file | Fractional anisotropy. | True | *__fa.{nii,nii.gz} |
Format : tuple val(meta), path(*__ga.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__ga.nii.gz | file | Geodesic anisotropy. | True | *__ga.{nii,nii.gz} |
Format : tuple val(meta), path(*__rgb.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__rgb.nii.gz | file | Colored fractional anisotropy. | True | *__rgb.{nii,nii.gz} |
Format : tuple val(meta), path(*__md.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__md.nii.gz | file | Mean diffusivity. | True | *__md.{nii,nii.gz} |
Format : tuple val(meta), path(*__mode.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__mode.nii.gz | file | Mode of tensors. | True | *__mode.{nii,nii.gz} |
Format : tuple val(meta), path(*__norm.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__norm.nii.gz | file | Norm of tensors. | True | *__norm.{nii,nii.gz} |
Format : tuple val(meta), path(*__rd.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__rd.nii.gz | file | Radial diffusivity. | True | *__rd.{nii,nii.gz} |
tensor
Section titled “tensor”Format : tuple val(meta), path(*__tensor.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__tensor.nii.gz | file | Tensor coefficients. | True | *__tensor.{nii,nii.gz} |
nonphysical
Section titled “nonphysical”Format : tuple val(meta), path(*__nonphysical.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__nonphysical.nii.gz | file | Map of voxels with physically implausible signals where the mean of b=0 images is below one or more diffusion-weighted images. | True | *__nonphysical.{nii,nii.gz} |
pulsation_std_dwi
Section titled “pulsation_std_dwi”Format : tuple val(meta), path(*__pulsation_std_dwi.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__pulsation_std_dwi.nii.gz | file | Standard deviation map across all diffusion-weighted images. Shows pulsation and misalignment artifacts. | True | *__pulsation_std_dwi.{nii,nii.gz} |
pulsation_std_b0
Section titled “pulsation_std_b0”Format : tuple val(meta), path(*__pulsation_std_b0.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__pulsation_std_b0.nii.gz | file | Standard deviation map across b=0 images if more than one is available. Shows pulsation and misalignment artifacts. | True | *__pulsation_std_b0.{nii,nii.gz} |
residual
Section titled “residual”Format : tuple val(meta), path(*__residual.nii.gz)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__residual.nii.gz | file | Residual of the tensor fit. | True | *__residual.{nii,nii.gz} |
residual_iqr_residuals
Section titled “residual_iqr_residuals”Format : tuple val(meta), path(*__residual_iqr_residuals.npy)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__residual_iqr_residuals.npy | file | Interquartile range of the residual of the tensor fit. | True | *__residual_iqr_residuals.npy |
residual_mean_residuals
Section titled “residual_mean_residuals”Format : tuple val(meta), path(*__residual_mean_residuals.npy)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__residual_mean_residuals.npy | file | Average of the residual of the tensor fit. | True | *__residual_mean_residuals.npy |
residual_q1_residuals
Section titled “residual_q1_residuals”Format : tuple val(meta), path(*__residual_q1_residuals.npy)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__residual_q1_residuals.npy | file | First quartile of the residual of the tensor fit. | True | *__residual_q1_residuals.npy |
residual_q3_residuals
Section titled “residual_q3_residuals”Format : tuple val(meta), path(*__residual_q3_residuals.npy)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__residual_q3_residuals.npy | file | Third quartile of the residual of the tensor fit. | True | *__residual_q3_residuals.npy |
residual_residuals_stats
Section titled “residual_residuals_stats”Format : tuple val(meta), path(*__residual_residuals_stats.png)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__residual_residuals_stats.png | file | Complete statistics of the residual of the tensor fit. | True | *__residual_residuals_stats.png |
residual_std_residuals
Section titled “residual_std_residuals”Format : tuple val(meta), path(*__residual_std_residuals.npy)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__residual_std_residuals.npy | file | Standard deviation of the residual of the tensor fit. | True | *__residual_std_residuals.npy |
Format : tuple val(meta), path(*__dti_mqc.png)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| meta | map | Groovy Map containing sample information e.g. [ id:'test', single_end:false ] | True | |
| *__dti_mqc.png | file | .png file containing screenshots of some DTI metrics. Made for use in MultiQC report. | True |
versions
Section titled “versions”Format : path(versions.yml)
| Type | Description | Mandatory | Pattern | |
|---|---|---|---|---|
| versions.yml | file | File containing software versions | True | versions.yml |
Arguments (see process.ext)
Section titled “Arguments (see process.ext)”| Type | Description | Default | Choices | |
|---|---|---|---|---|
| dwi_shell_tolerance | integer | Tolerance for the shell detection algorithm. | 20 | |
| max_dti_shell_value | integer | Maximum value for the DTI shell. | 1500 | |
| b0_thr_extract_b0 | integer | Threshold for the b0 extraction. | 0 | |
| b0_threshold | integer | Threshold for the b0 mask. | 0 | |
| dti_shells | string | List of b-values to use for the DTI computation. | 0 1000 | |
| b0mask | boolean | Use the b0 mask to mask the input image. | True | |
| ad | boolean | Compute the axial diffusivity. | True | |
| evecs | boolean | Compute the eigenvectors of the tensor. | True | |
| evals | boolean | Compute the eigenvalues of the tensor. | True | |
| fa | boolean | Compute the fractional anisotropy. | True | |
| ga | boolean | Compute the geodesic anisotropy. | True | |
| rgb | boolean | Compute the colored fractional anisotropy. | True | |
| md | boolean | Compute the mean diffusivity. | True | |
| mode | boolean | Compute the mode. | True | |
| norm | boolean | Compute the tensor norm. | True | |
| rd | boolean | Compute the radial diffusivity. | True | |
| tensor | boolean | Compute the tensor coefficients. | True | |
| nonphysical | boolean | Compute the nonphysical voxels. | True | |
| pulsation | boolean | Compute the pulsation. | True | |
| residual | boolean | Compute the residual. | True |
| Description | DOI | |
|---|---|---|
| scilpy | The Sherbrooke Connectivity Imaging Lab (SCIL) Python dMRI processing toolbox. |
Authors
Section titled “Authors”Last updated : 2025-10-30