Skip to content

stats_metricsinroi

Module to compute statistics (mean, std) of scalar maps (metrics), which can represent diffusion metrics, in ROIs or labels.

Keywords : nifti, volume, scilpy, stats, rois


Format : tuple val(meta), path(metrics), path(rois), path(rois_lut)

TypeDescriptionMandatoryPattern
metamapGroovy Map containing sample information e.g. [ id:'test', single_end:false ]True
metricsfileMetrics volume(s) in NiftiTrue*.{nii,nii.gz}
roisfileROI or Label volume(s) in NiftiTrue*.{nii,nii.gz}
rois_lutfileLUT file corresponding to labels, used to name the regions of interestTrue*.{nii,nii.gz}

Format : tuple val(meta), path(*_stats.json)

TypeDescriptionMandatoryPattern
metamapGroovy Map containing sample information e.g. [ id:'test', single_end:false ]True
*_stats.jsonfileJSON file containing mean/std per pair of roi/metrics or label/metricsTrue*_stats.json

Format : path(versions.yml)

TypeDescriptionMandatoryPattern
versions.ymlfileFile containing software versionsTrueversions.yml

TypeDescriptionDefaultChoices
suffixstringIt will add an extra string before “_stats.json”
binbooleanIf set, will consider every value of the mask higherthan 0 to be part of the mask (equivalent weighting for every voxel). It will be used if use_label is false.False
normalize_weightsbooleanIf set, the weights will be normalized to the [0,1] range. It will be used if use_label is false.False
use_labelbooleanIf set, rois image will be considered as a label image with multiple indices.False

DescriptionDOI
scilpyThe Sherbrooke Connectivity Imaging Lab (SCIL) Python dMRI processing toolbox.


Last updated : 2025-10-20