Module: tractoflow

This subworkflow implements the TractoFlow [1] pipeline. It can process raw diffusion and T1 weighted image to reduce acquisition biases, align anatomical and diffusion space, compute DTI and fODF metrics and generate whole brain tractograms. ---------- Configuration ----------

  • nextflow.config : contains an example configuration for the subworkflow. └── modules.config : contains the bindings to the modules parameters and some defaults making it Tractoflow.

    i.e: nextflow.config import modules.config -------------- Steps -------------- PREPROCESS DWI (preproc_dwi, nf-neuro) Preprocess the DWI image including brain extraction, MP-PCA denoising, eddy current and motion correction, N4 bias correction, normalization and resampling. PREPROCESS T1 (preproc_t1, nf-neuro) Preprocess the T1 image including brain extraction, NL-Means denoising, bias field correction and resampling. T1 REGISTRATION (anatomical_registration, nf-neuro) Register the T1 image to the DWI image, using the b0 and the FA map as target for the diffusion space. SEGMENTATION (anatomical_segmentation, nf-neuro) Segment the T1 image into white matter, gray matter and CSF, in diffusion space. DTI FITTING (dipy) Fit the diffusion tensor model on the preprocessed DWI image and extract relevant metrics. FRF ESTIMATION (scilpy) Estimate the Fiber Response Function (FRF) from the preprocessed DWI image. FODF FITTING (dipy) Fit the Fiber Orientation Distribution Function (fODF), using Single or Multi Shell, Single or Multi Tissues models, on the preprocessed DWI image and extract relevant metrics. PFT TRACKING (dipy) Perform Particle Filtering Tractography (PFT) on the FODF to generate whole brain tractograms. LOCAL TRACKING (dipy on CPU, scilpy on GPU) Perform Local Tracking on the FODF to generate whole brain tractograms.

[1] https://tractoflow-documentation.readthedocs.io

Inputs

TypeDescriptionPattern
ch_dwifileThe input channel containing the DWI file, B-values and B-vectors in FSL format files. Structure: [ val(meta), path(dwi), path(bval), path(bvec) ]
ch_t1fileThe input channel containing the anatomical T1 weighted image. Structure: [ val(meta), path(t1) ]
ch_sbreffile(Optional) The input channel containing the single-band b0 reference for the DWI. Structure: [ val(meta), path(rev_b0) ]
ch_rev_dwifile(Optional) The input channel containing the reverse DWI file, B-values and B-vectors in FSL format files. Structure: [ val(meta), path(rev_dwi), path(bval), path(bvec) ]
ch_rev_sbreffile(Optional) The input channel containing the reverse b0 file. Structure: [ val(meta), path(rev_b0) ]
ch_aparc_asegfile(Optional) The input channel containing freesurfer brain segmentation and gray matter parcellation (aparc+aseg). Must be supplied with ch_wm_parc. When supplied, those are used to generate tissues masks and probability maps. Structure: [ val(meta), path(aparc_aseg) ]
ch_wm_parcfile(Optional) The input channel containing freesurfer white matter parcellations (wmparc). Must be supplied with ch_aparc_aseg. When supplied, those are used to generate tissues masks and probability maps. Structure: [ val(meta), path(wmparc) ]
ch_topup_configfile(Optional) The input channel containing the config file for Topup. This input is optional. See https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup/TopupUsersGuide#Configuration_files. Structure: [ path(config_file) ]
ch_bet_templatefile(Optional) The input channel containing the anatomical template for antsBET. Structure: [ val(meta), path(bet_template) ]
ch_bet_probability_mapfile(Optional) The input channel containing the brain probability mask for antsBET, with intensity range 1 (definitely brain) to 0 (definitely background). Structure: [ val(meta), path(probability_map) ]
ch_lesion_maskfile(Optional) The input channel containing the lesion mask for segmentation. Structure: [ val(meta), path(lesion_mask) ]

Outputs

TypeDescriptionPattern
dwifilePreprocessed DWI image. Structure: [ val(meta), path(dwi), path(bval), path(bvec) ]
t1fileT1 image warped to the DWI space. Structure: [ val(meta), path(t1) ]
wm_maskfileWhite matter mask. Structure: [ val(meta), path(wm_mask) ]
gm_maskfileGray matter mask. Structure: [ val(meta), path(gm_mask) ]
csf_maskfileCerebrospinal fluid mask. Structure: [ val(meta), path(csf_mask) ]
wm_mapfileWhite matter probability map. Structure: [ val(meta), path(wm_map) ]
gm_mapfileGray matter probability map. Structure: [ val(meta), path(gm_map) ]
csf_mapfileCerebrospinal fluid probability map. Structure: [ val(meta), path(csf_map) ]
aparc_asegfile(Optional) Freesurfer brain segmentation and gray matter parcellation (aparc+aseg) in diffusion space. Only available if ch_aparc_aseg is provided in inputs. Structure: [ val(meta), path(aparc_aseg) ]
wmparcfile(Optional) Freesurfer white matter parcellations (wmparc) in diffusion space. Only available if ch_wm_parc is provided in inputs. Structure: [ val(meta), path(wmparc) ]
anatomical_to_diffusionfileTransformation matrix from the anatomical space to the diffusion space. Structure: [ val(meta), [<path(warp)>, path(affine)] ]
diffusion_to_anatomicalfileTransformation matrix from the diffusion space to the anatomical space. Structure: [ val(meta), [path(affine), <path(warp)>] ]
t1_nativefilePreprocessed T1 in anatomical space. Structure: [ val(meta), path(t1) ]
dti_tensorfile4-D Diffusion tensor image, with 6 components in the last dimensions, ordered by FSL convention (row-major : Dxx, Dxy, Dxz, Dyy, Dyz, Dzz). Structure: [ val(meta), path(dti_tensor) ]
dti_mdfileMean diffusivity map. Structure: [ val(meta), path(dti_md) ]
dti_rdfileRadial diffusivity map. Structure: [ val(meta), path(dti_rd) ]
dti_adfileAxial diffusivity map. Structure: [ val(meta), path(dti_ad) ]
dti_fafileFractional anisotropy map. Structure: [ val(meta), path(dti_fa) ]
dti_rgbfileRGB map of the diffusion tensor. Structure: [ val(meta), path(dti_rgb) ]
dti_peaksfilePrincipal direction of the diffusion tensor. Structure: [ val(meta), path(dti_peaks) ]
dti_evecsfileEigenvectors of the diffusion tensor, ordered by eigenvalue. Structure: [ val(meta), path(dti_evecs) ]
dti_evalsfileEigenvalues of the diffusion tensor. Structure: [ val(meta), path(dti_evals) ]
dti_residualfileResiduals of the diffusion tensor fitting. Structure: [ val(meta), path(dti_residual) ]
dti_gafileGeneralized anisotropy map. Structure: [ val(meta), path(dti_ga) ]
dti_modefileMode of the diffusion tensor. Structure: [ val(meta), path(dti_mode) ]
dti_normfileNorm of the diffusion tensor. Structure: [ val(meta), path(dti_norm) ]
fiber_responsefileFiber Response Function (FRF) estimated from the DWI image. If using Single Tissue Structure: [ val(meta), path(fiber_response) ] If using Multi Tissues Structure: [ val(meta), path(wm_fiber_response), path(gm_fiber_response), path(csf_fiber_response) ]
fodffileFiber Orientation Distribution Function (fODF) estimated from the DWI image. If using Single Tissue Structure: [ val(meta), path(fodf) ] If using Multi Tissues Structure: [ val(meta), path(wm_fodf), path(gm_fodf), path(csf_fodf) ]
fodf_rgbfileRGB map of the fODF, normalized by volume fraction of WM. Structure: [ val(meta), path(fodf_rgb) ]
fodf_peaksfilePeaks of the fODF. Structure: [ val(meta), path(fodf_peaks) ]
afd_maxfileMaximum Apparent Fiber Density (AFD) map. Structure: [ val(meta), path(afd_max) ]
afd_totalfileTotal Apparent Fiber Density (AFD) map. Structure: [ val(meta), path(afd_total) ]
afd_sumfileSum of Apparent Fiber Density (AFD) map. Structure: [ val(meta), path(afd_sum) ]
nufofileNumber of Unique Fibers Orientations (NUFO) map. Structure: [ val(meta), path(nufo) ]
volume_fractionfileTissues volume fraction map. Structure: [ val(meta), path(volume_fraction) ]
pft_tractogramfileWhole brain tractogram generated with Particle Filtering Tractography (PFT). Structure: [ val(meta), path(pft_tractogram) ]
pft_configfileConfiguration file used for Particle Filtering Tractography (PFT). Structure: [ val(meta), path(pft_config) ]
pft_map_includefileInclude map used for Particle Filtering Tractography (PFT). Structure: [ val(meta), path(pft_map_include) ]
pft_map_excludefileExclude map used for Particle Filtering Tractography (PFT). Structure: [ val(meta), path(pft_map_exclude) ]
pft_seeding_maskfileSeeding mask used for Particle Filtering Tractography (PFT).
local_tractogramfileWhole brain tractogram generated with Local Tracking. Structure: [ val(meta), path(local_tractogram) ]
local_configfileConfiguration file used for Local Tracking. Structure: [ val(meta), path(local_config) ]
local_seeding_maskfileSeeding mask used for Local Tracking. Structure: [ val(meta), path(local_seeding_mask) ]
local_tracking_maskfileTracking mask used for Local Tracking. Structure: [ val(meta), path(local_tracking_mask) ]
versionsfileFile containing software versions Structure: [ path(versions.yml) ]versions.yml

Components

anatomical_segmentation
preproc_dwi
preproc_t1
registration
reconst/dtimetrics
reconst/frf
reconst/fodf
reconst/meanfrf
registration/antsapplytransforms
tracking/localtracking
tracking/pfttracking

Keywords

diffusion
MRI
end-to-end
tractography
preprocessing
fodf
dti

Authors

@AlexVCaron

Maintainers

@AlexVCaron