Module: bundle_seg

Subworkflow to perform BundleSeg [1] to extract major white matter bundle from a tractogram.

[1] St-Onge, Etienne, Kurt G. Schilling, and Francois Rheault. “BundleSeg: A versatile,reliable and reproducible approach to white matter bundle segmentation.” International Workshop on Computational Diffusion MRI. Cham: Springer Nature Switzerland (2023)

--------- Steps -------------------- Antomical Registration (ANTs) Use the FA map from the subject to register the atlas anatomical file and compute the transformations. Bundle Recognition (scilpy) Perform bundle recognition and extraction using BundleSeg.

Inputs

TypeDescriptionPattern
ch_fafileThe input channel containing the FA map. This map is used to compute the transformation between the atlas’ space and the subject’s space. Structure: [ val(meta), path(fa) ]*.{nii,nii.gz}
ch_tractogramfileThe input channel containing the whole-brain tractogram to be segmented. Structure: [ val(meta), path(tractogram) ]*.trk
atlas_directorydirectoryThe input channel containing the atlas directory. The folder MUST follow this specific structure: atlas_directory ├── atlas │ └── pop_average ├── centroids ├── *.json (config file) └── *.{nii,nii.gz} (atlas anatomical file) If no directory is provided, the subworkflow will automatically fetch the atlas archive available on Zenodo (https://zenodo.org/records/10103446). Structure: [ path(directory) ]

Outputs

TypeDescriptionPattern
bundlesfileChannel containing all the segmented bundle files. Structure: [ val(meta), path(bundles) ]*.trk
versionsfileFile containing software versions Structure: [ path(versions.yml) ]versions.yml

Components

registration/ants
bundle/recognize

Keywords

BundleSeg
WM bundles
Tractogram
Segmentation

Authors

@gagnonanthony

Maintainers

@gagnonanthony